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ABSTRACT
This paper shows how to embed a similarity relation between
complex descriptions in concept lattices. We formalize sim-
ilarity by a tolerance relation: objects are grouped within
a same concept when having similar descriptions, extending
the ability of FCA to deal with complex data. We propose
two different approaches. A first classical manner defines a
discretization procedure. A second way consists in repre-
senting data by pattern structures, from which a pattern
concept lattice can be constructed directly. In this case,
considering a tolerance relation can be mathematically de-
fined by a projection in a meet-semi-lattice. This allows to
use concept lattices for their knowledge representation and
reasoning abilities without transforming data. We show fi-
nally that resulting lattices are useful for solving information
fusion problems.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods; I.5.3 [Clustering]: Similarity
measures

General Terms
Theory, Management, Experimentation

1. INTRODUCTION
In this paper, we are interested in analyzing complex real-

world data. Data can be analyzed with knowledge discovery
methods s.t. Formal Concept Analysis (FCA) [3], a mathe-
matically well founded classification framework allowing to
derive implicit relationships from a set of objects and their
attributes. The main structure which is built is a concept
lattice, that can be represented by a diagram where classes of
objects and ordering relations between classes can be drawn
and interpreted and used for knowledge management, data
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mining, etc. To handle complex data with FCA one requires
scaling (discretization), which transforms many-valued at-
tributes to binary attributes. A scaling is a way of data
interpretation, different scaling may result in different con-
cept lattices.

We propose a classification approach based on FCA and
an appropriate scaling that can be applied to real-world ob-
jects described by numerical attributes and taking into ac-
count similarity between attribute values. The mathemati-
cal formalization of similarity relies on a tolerance relation
which is reflexive and symmetric. A tolerance relation can
be used for building tolerance classes of similar objects that
are reused to properly define a scaling for initial numeri-
cal data allowing FCA to be applied. Besides scaling, it is
possible to directly process complex data using the so-called
pattern structure approach. This extension of FCA is re-
called here and applied to intervals. Contrasting the large
body of work on discretization for numerical classification
methods [8], this paper introduces and explains relation-
ships between standard FCA, scaling, pattern structures,
and similarity.

The paper is organized as follows. Section 2 presents pre-
liminaries on FCA and scaling procedures. Section 3 intro-
duces tolerance relations, the way how scales can be designed
from numerical data, and how numerical concept lattices are
built. Section 4 describes pattern structures in FCA and
the use of tolerance relations in this framework. Section 5
describes a real-world experiment in agronomy, where the
resulting lattice materializes information fusion and can be
rather easily interpreted by agronomy experts.
Table 1: Numerical data.

m1 m2 m3

g1 6 0 [1, 2]
g2 8 4 [2, 5]
g3 11 8 [4, 5]
g4 16 8 [6, 9]
g5 17 12 [7, 10]

Table 2: Formal context.

m1 m2 m3

g1 × ×
g2 × ×
g3 × ×
g4 ×
g5 ×

2. FORMAL CONCEPT ANALYSIS (FCA)
FCA starts with a formal context, which is a triple

(G,M, I), where G denotes a set of objects, M a set of at-
tributes, and I ⊆ G×M a binary relation between G andM .
The statement (g,m) ∈ I is interpreted as “the object g has
attribute m” (Table 2). The two derivation operators (·)′
define a Galois connection between the powersets (2G,⊆)
and (2M ,⊆). A′ = {m ∈ M | ∀g ∈ A : gIm}, for A ⊆ G,
and B′ = {g ∈ G | ∀m ∈ B : gIm} for B ⊆ M . For A ⊆ G,
B ⊆ M , a pair (A,B), such that A′ = B and B′ = A,
is called a (formal) concept, e.g. ({g3, g4, g5}, {m1}). In
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Figure 1: Concept lattice associated with Table 2.

(A,B), the set A is called the extent and the set B the
intent of the concept (A,B). Concepts are partially or-
dered by (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 (⇔ B2 ⊆
B1), e.g. the concept ({g3}, {m1,m3}) is a sub-concept of
({g3, g4, g5}, {m1}). With respect to this partial order, the
set of all formal concepts forms a complete lattice called
the concept lattice of the formal context (G,M, I). Figure 1
shows the concept lattice associated with Table 2. On the
diagram, each node denotes a concept while a line denotes
an order relation between two concepts. Due to reduced la-
beling, the extent of a concept has to be considered as com-
posed of all objects lying in the extents of its sub-concepts.
Dually, the intent of a concept is composed of all attributes
in the intents of its super-concepts.

Non-binary data (Table 1) are described by a many-valued
context (G,M,W, I), whereW denotes a set of attribute val-
ues, such that (g,m,w) ∈ I . The fact that attributem takes
value w for object g is denoted by m(g) = w. A standard
approach in FCA for constructing a concept lattice from a
many-valued context (G,M,W, I) consists in applying con-
ceptual scaling, where a scale for a many-valued attribute
is given by a transformation of attribute-value pairs into
a set of binary attributes. For example, Table 1 can be
transformed into Table 2 where the scale for m1 is given by
{m1 ≥ 10}, resp. {m2 ≤ 6} and {m3 ≤ 5} for m2 and
m3. The choice of a scale is arbitrary and usually leads to
loss of information (links and closeness between values) and
border problems, but it remains an important technique for
binarizing complex data [3, 8].

3. TOLERANCE-BASED SCALING
Introduction and definitions. Similarity has been stud-

ied from many points of view in artificial intelligence and
pattern recognition [7]. For example, considering documents
described by their attributes, e.g. keywords, similarity of
documents x and y can be defined by non-emptiness of the
set of their common attributes, x′ ∩ y′ 
= ∅. The similarity
is reflexive and symmetric, but not necessarily transitive.
Following this idea, a tolerance relation captures the char-
acteristics of a similarity [6].

Definition 3.1. For a set G, a binary relation T ⊆ G×G
is called tolerance if:

(i) ∀x ∈ G xTx (reflexivity)
(ii) ∀x, y ∈ G xTy → yTx (symmetry)

Let us consider now a set of objects G, a tolerance relation
T , and a formal context (G,G, T ). First, some objects, say
g1 and g2, are observed to be similar, i.e. g1Tg2. Then pairs
of the tolerance relation lead to a class of similar objects or
“class of similarity”. Moreover, among the classes of similar-
ity, some classes are maximal meaning that the class is not
included in any larger class.

Definition 3.2. Given a set G, a subset K ⊆ G, and a
tolerance relation T on G, K is a class of tolerance if:

(i) ∀x, y ∈ K xTy (pairwise similarity)
(ii) ∀z 
∈ K,∃u ∈ K ¬(zTu) (maximality)

An arbitrary subset of a class of tolerance is a preclass.
Now, let us consider the classes of tolerance associated with
the formal context (G,G, T ). The class of tolerance of an

object g has to be considered along two dimensions: (i) the
class is defined as the set of all objects which are tolerant
with g, (ii) the class is maximal in the sense that objects in
the class are pairwise similar, and adding any other object
in the class results in some pairs of non tolerant objects. A
class of tolerance may be given a name which can be further
used as an “attribute name” that describes the object. The
result is a formal context (G,M, I) where I associates any
object in G with its classes of tolerance m ∈M .

Let us return to objects and numerical attributes of Ta-
ble 1. Intuitively, two objects g1 and g2 are similar for a
set of attributes if the values for each attribute are “simi-
lar”. Similarity (or closeness) of two numerical values can
be measured by the difference of these two values: |m1(g1)−
m1(g2)|. Then, two numerical values are similar when their
difference is lower than a similarity threshold θ expressing
the maximal variation allowed between two similar values.
More precisely, given two numbers a, b ∈ R and a similarity
threshold θ, a similarity relation �θ is defined as:

a �θ b⇔ |a− b| ≤ θ
This similarity relation �θ is reflexive and symmetric but
not necessarily transitive, e.g. 1 �2 3, 3 �2 5, but 1 
�2 5.

The same holds when attributes are interval-valued by
defining a similarity �θ as follows, with a, b, c, d ∈ R:

[a, b] �θ [c, d] ⇔ max(b, d)−min(a, c) ≤ θ
provided that |a − b| ≤ θ and that |c − d| ≤ θ. In other
words, two numerical intervals are θ-similar if the length of
their “convex hull” is not larger than a threshold θ.

Classes of tolerance for numerical attributes. Let
us consider a numerical many-valued context (G,M,W, I)
where the range Wm of an attribute m is such that Wm ⊆
W ⊂ R. Each attribute has a different range and different
similarities and thresholds θ have to be defined. However,
data can be normalized leading to a single threshold.

Given an attribute m ∈ M , let us consider the formal
context (Wm,Wm,�θ). Similar objects in Wm are related
w.r.t. �θ. For example, given θ = 5 and m1 in Table 1,
the formal context (Wm1 ,Wm1 ,�5) can be read in Figure 2
(left). As �5 is symmetric and reflexive, (Wm1 ,Wm1 ,�5)
contains a diagonal of crosses and the associated concept
lattice (see Figure 2 (right)) is also symmetric.

Proposition 3.1. Given a context (Wm,Wm,�θ) and the
associated lattice, any concept (A,B) is such that either
A ⊂ B, B ⊂ A,or A = B. For each concept (A,B), the
pair (B,A) is also a concept.

For example, the upper right concept on Figure 2 (right)
can be read as ({8, 6, 11, 16}, {11}) and has a corresponding
concept ({11}, {8, 6, 11, 16}) lower still on the right. One
consequence of the above proposition is that the concept
lattice can be separated in two parts w.r.t. the mapping
(A,B) �→ (B,A). In [3], such a mapping is called a polarity,
i.e. an order-reversing bijection inverse of itself, and the
resulting concept lattice is a polarity lattice. Then, the set
of all concepts (A,B) such that A = B forms an axis of
polarity of the concept lattice.

Concepts ({6, 8, 11}, {6, 8, 11}), ({16, 17}, {16, 17}) and
({11, 16}, {11, 16}), form the axis of polarity of the lattice
on Figure 2 (right). The set of all concepts (C,D) such that
(A,B) ≤ (C,D), denoted by U , forms the upper part of the
concept lattice. Dually, the set of all concepts (E,F ) such
that (E,F ) ≤ (A,B), denoted by L, forms the lower part
of the concept lattice. If (A,B) ∈ U then (B,A) ∈ L and
B ⊂ A. Dually, if (A,B) ∈ L then (B,A) ∈ U and A ⊂ B.
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m1 6 8 11 16 17
6 × × ×
8 × × ×
11 × × × ×
16 × × ×
17 × ×

Figure 2: Symmetric context formalizing a tolerance
relation (left) and its concept lattice (right).

Proposition 3.2. Let (A,B) be a concept of the axis of
polarity, i.e. A = B. Then, A (or B) is a set of max-
imal pairwise similar values, i.e. A determines a class of
tolerance. Let (C,D) a concept in U but not in the axis of
polarity, i.e. D ⊂ C. D is a preclass of tolerance and C is
the set of all values similar to values in D.

The intents of the concepts in the upper part of the lattice
–or dually the extents in the lower part– are partially or-
dered and determine sets of similar values. Among these
intents, the intents in the axis of polarity are maximal and
are classes of tolerance, and the other intents are only pre-
classes of tolerance. For example, taking θ = 5 and m1 in
Table 1, there are 5 intents, namely {16}, {11}, {16, 17},
{11, 16}, and {6, 8, 11}, where the three last intents are tol-
erance classes. When there is no ambiguity, we use the term
of “class of similarity” for a class or a “preclass of tolerance”.

We have made precise how a partially ordered set of classes
of similarity can be built from a many-valued context. Now,
classes of similarity have to be named before being used as
attribute names for scaling the original many-valued con-
text. Actually, the name of the elements of the scale can be
related to the semantic content of the corresponding class
of similarity and to the name of the original attribute that
is scaled. Here, an element of the scale is named by a pair
associating the name of the original attribute and either the
content of the class of similarity or their convex hull, e.g
{16, 17} or [16, 17] for m1.

Table 3: Formal context obtained from Table 1 han-
dling classes of tolerance of attributes m1 and m2.

(m
1
,
1
1
)

(m
1
,
1
6
)

(m
1
,
[6
,
1
1
])

(m
1
,
[1
1
,
1
6
])

(m
1
,
[1
6
,
1
7
])

(m
2
,
4
)

(m
2
,
8
)

(m
2
,
[0
,
4
])

(m
2
,
[4
,
8
])

(m
2
,
[8
,
1
2
])

g1 × ×
g2 × × × ×
g3 × × × × × ×
g4 × × × × × ×
g5 × ×

Building a “numerical concept lattice”. Consider
the numerical context (G,W,M, I) in Table 1. Three sets of
classes of similarity (one for each attribute) are computed
thanks to three tolerance relations relying on three different
similarities �θ, and extracted from the symmetric concept
lattices associated with each tolerance relation. The trans-
formation of the original context (G,W,M, I) into the de-
rived context (G,N, J) with G is the set of original objects,
N =

⋃
m∈M ({m} × Cm) with Cm is the set of all classes of

similarity of attribute m, and (g, (m,Cm)) ∈ J means that
the value of object g in the many-valued context, i.e. m(g),
belongs to class Cm. The derived binary context associated
with Table 1 is given in Table 3 for attributes m1 and m2

where the thresholds are θ = 5 for m1 and θ = 4 for m2

(and θ = 5 for m3).

4. TOLERANCE IN PATTERN STRUCTURES
The preceding work takes place in standard FCA with

scaling. An extension consists on working directly on com-
plex data, without scaling. For this, a pattern structure is a
generalization of a formal context for complex data [2]. First
a similarity operation � is defined on object descriptions.
This operation is idempotent, commutative and associative,
which allows for defining a natural partial order on D.

Formally, let G be a set of objects, (D,�) be a meet-semi-
lattice of object descriptions and δ : G→ D a mapping asso-
ciating an object with its description. Then (G, (D,�), δ) is
called a pattern structure. Elements of D are called patterns
and are ordered by the subsumption relation �: given c, d ∈
D, c � d⇔ c�d = c. A pattern structure (G, (D,�), δ) gives
rise to the following derivation operators (·)�, given A ⊆ G

and d ∈ (D,�): A� =
�

g∈A δ(g) and d� = {g ∈ G|d �
δ(g)}. These operators form a Galois connection between
(2G,⊆) and (D,�). (Pattern) concepts of (G, (D,�), δ) are
pairs of the form (A, d), A ⊆ G, d ∈ (D,�), s.t. A� = d and

A = d�. For a pattern concept (A,d), d is called intent and
is a description of all objects in A, called extent. Partially
ordered by (A1, d1) ≤ (A2, d2) ⇔ A1 ⊆ A2 (⇔ d2 � d1), the
set of all concepts forms a so-called pattern concept lattice.

Interval pattern structures [4]. A numerical dataset
is represented by a many-valued context (G,M,W, I). Ob-
jects are described by numbers or intervals, each one
standing for a given attribute, and hence interval vec-
tors are introduced as patterns. When c and d are in-
terval vectors, we write c = 〈[ai, bi]〉i∈[1,|M|] and d =
〈[ci, di]〉i∈[1,|M|]. Interval vectors may be partially ordered
within a meet-semi-lattice as follows. Given two interval
vectors c = 〈[ai, bi]〉i∈{1,...,|M|}, and d = 〈[ci, di]〉i∈{1,...,|M|},
c � d = 〈[min(ai, ci),max(bi, di)]〉i∈{1,...,|M|} meaning that
a “convexification” of intervals on each vector dimension
is operated. The meet operator induces the following
subsumption relation � on interval patterns 〈[ai, bi]〉 �
〈[ci, di]〉 ⇔ [ai, bi] ⊇ [ci, di], ∀i ∈ {1, ..., |M |}. In Ta-
ble 1, description of g1 is δ(g1) = 〈[6, 6], [0, 0], [1, 2]〉.
We have δ(g1) � δ(g2) = 〈[6, 8], [0, 4], [1, 5]〉, and therefore
〈[6, 8], [0, 4], [1, 5]〉 � 〈[6, 6], [0, 0], [1, 2]〉. The Galois connec-

tion is illustrated as follows. {g1, g3}� = 〈[6, 11], [0, 8], [1, 5]〉
and 〈[6, 11], [0, 8], [1, 5]〉� = {g1, g2, g3}, making the pair
({g1, g2, g3}, 〈[6, 11], [0, 8], [1, 5]〉) a pattern concept.

Tolerance relation in pattern structures. Given
a,b,c,d ∈ R, a parameter θ ∈ R, we say that two descrip-
tions (intervals) [a, b] and [c, d] are similar if: max(b, d) −
min(a, c) ≤ θ, i.e. size of [a, b] � [c, d] does not exceed θ.

Then, though each interval from a semi-lattice (D,�) de-
scribes a preclass of tolerance, some intervals may not be
“maximal”, i.e. not describing classes of tolerance. Below,
we show how to replace any interval by its “maximal” inter-
val with a projection in a meet-semi-lattice.

First, consider the meet-semi-lattice (D,�) of interval val-
ues for a given attribute. Then, for any interval x ∈ D, we
define the ball B(x, θ) as the set of intervals in D similar to
x as follows: B(x, θ) = {y ∈ D | y �θ x}. This ball with
center x and diameter θ contains all intervals y such that x
and y are similar.

Now, we remove from B(x, θ) any pair of intervals that are
not pairwise similar, and build an interval with the left bor-
der (resp. right border) as the minimum (resp. maximum)
of all intervals. This can be done by replacing any x of the
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meet-semi-lattice of intervals by the meet of all intervals y
from the ball B(x, θ) that are not dissimilar with another
element y′ of this ball:

ψ(x, θ) :=
�

{y ∈ B(x, θ)|∀y′[y′ ∈ B(x, θ) → y �θ y
′]}

ψ maps any x ∈ D to a representation of its class of tol-
erance, i.e. the associated maximal set of pairwise simi-
lar elements. For example, with attribute m3, we have
ψ([2, 5], 5) = [1, 5] and [1, 5] is the similarity (in the sense
of operation �) of all elements of the class of tolerance con-
taining [2, 5], i.e. the class {[1, 2], [2, 5], [4, 5]}. When the
size of an interval exceeds θ, the ball of similar patterns is
empty. ψ is a mapping that takes any x ∈ D to an element
ψ(x) ∈ (D,�) such that ψ(x) � x, meaning that ψ is con-
tractive. In sense of [2], ψ is a projection in the semi-lattice
(D,�) as also monotone and idempotent. Moreover, any
projection of a complete semi-lattice (D,�) is �-preserving,
i.e. for any x, y ∈ D, ψ(x�y) = ψ(x)�ψ(y) [2]. Thereby, the
projection may be computed in advance, replacing each pat-
tern by a “weaker” or “more general” pattern. It comes with
a loss of information, e.g in previous example [2, 5] replaced
by [1, 5] which is more imprecise. However, this loss of infor-
mation is controlled by θ: the projected pattern structure
preserves the similarity between descriptions in the original
pattern structure, and keeps the same representation for-
malism while embedding a tolerance relation.

5. AN INFORMATION FUSION PROBLEM
Agronomists compute indicators for evaluating the impact

of agricultural practices on the environment. The risk level
for a pesticide to reach groundwater is computed by the indi-
cator Igro in [1]. Based on the value of Igro, agronomists try
to make a diagnosis of agronomic know-how w.r.t. the use of
pesticides. Pesticide characteristics depend on the chemical
characteristics of the product while pesticide period applica-
tion and field characteristics depend on domain knowledge.
This knowledge lies in information sources such as books,
databases, and expert knowledge in agronomy. Moreover,
values for some characteristics may vary w.r.t. information
sources. Here, we are interested in the analysis of practices
through the use of glyphosate in different countries w.r.t.
farmers habits. Below, three characteristics of glyphosate,
namely DT50, koc, and ADI (detailed in [5]), are given in
Table 4 (simplified data), according to 12 different infor-
mation sources, but the latter are not always in agreement.
Then, it can be interesting for experts in agronomy to anal-
yse such a table from the point of view of information fusion:
which are the sources being in agreement and at which level?
We apply our framework on similarity and scaling to build
a concept lattice from Table 4. Three thresholds are defined
according to experts [5]: θ = 100 forDT50, θ = 2200 for koc,
and θ = 0 for ADI . The resulting lattice (Figure 3) shows
an interesting classification of information sources w.r.t. in-
formation fusion. Each concept in the lattice is composed of
an extent with a maximal set of sources in agreement w.r.t.
the interval of values in the intent. According to experts in
agronomy, the lattice on Figure 3 is a good witness of the
diversity of practices and of the agreement degree between
sources (see [5]).

6. CONCLUSION
This paper shows how to build concept lattices from com-

plex data, where concepts are sets of similar objects, (i) with

Table 4: Characteristics of pesticide glyphosate.

DT50 (days) koc (L/kg) ADI (g/kg/day)

BUS 47 24000 0.3
PM10 [3,60] [25,68000] 0.3
INRA [38,60] 167 0.05
Dabene [38,60] 167 0.05
ARSf [2,174] [500,2640] [0.05,0.3]
ARSl [2,174] [500,2640] [0.05,0.3]
Com96 [2,174] [25,68000] 0.3
Com98 [38,60] [500,2640] 0.3
RIVM [18,66] [3566,40420] [0.05,0.3]
BUK [3,60] [25,68000] 0.3
AGXf [8,30] [301,59000] 0.3
AGXl [14,111] [301,59000] 0.3

Figure 3: Concept lattice raised from Table 4.

an appropriate scaling and classical FCA, (ii) by projecting
a meet-semi-lattice of patterns. (ii) allows to use FCA for
knowledge representation and reasoning without transform-
ing data and can be generalised to any structured data for
which a similarity measure can be defined. Finally, we show
that the resulting lattice can characterize subsets of sources
with similar and precise information for fusion issues. It
remains to carry out a deep analysis on links between dis-
cretization methods and projections of semi-lattices, while
an interesting perspective concerns association rules, e.g.
(ADI = 0.05 ∧ koc = 167) → (DT50 ∈ [18, 66]) with confi-
dence 100% can be read in Figure 3.
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